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Abstract: In this work, a new sensitive voltammetric method for the determination of rifampicin
without time-consuming preconcentration is presented. The objective was to develop a simple, fast
and sensitive voltammetric procedure for the analysis of rifampicin in pharmaceutical products.
The cyclic renewable mercury film silver-based electrode (Hg(Ag)FE) was applied as a working
electrode for this purpose. The optimal conditions for the determination of rifampicin were defined,
in terms of the composition of supporting electrolyte (including pH) and instrumental parameters
(potential and time of deposition, step potential, pulse height). The method was validated resulting
in a satisfactory linearity range of 0.4–250.0 µgmL−1; the limits of detection and quantification are
0.12 µgmL−1 and 0.4 µgmL−1, respectively; and the repeatability of the method expressed as RSD is
4.1% (n = 6) with a surface area of 10.9 mm2. The proposed method was successfully applied in the
analysis of rifampicin in simple and composed pharmaceutical formulations.

Keywords: rifampicin; pharmaceutical analysis; mercury film electrodes; voltammetry

1. Introduction

Rifampicin (RIF) is a macrocyclic antibiotic, recommended as the first-line treatment
of tuberculosis, also with other therapeutic agents [1], in the prevention of the Neisseria
meningitidis infection [2] and even for antibiotic prophylaxis of the postoperative endoph-
thalmitis [3]. Considering reported variability of RIF pharmacokinetics, therapeutic inef-
fectiveness was explained by its low plasma concentrations [4,5]. Problematic or delayed
achievement of RIF therapeutic concentration may also contribute to the death of patients
suffering from pulmonary tuberculosis. Moreover, several studies have shown a close
relationship between RIF toxicity and its high plasma level [6]. Considering this variability
of RIF, the therapeutic drug monitoring of RIF is helpful in tuberculosis therapy to prevent
low plasma concentrations, drug-related toxicity, therapeutic failure and drug resistance or
tuberculosis relapse [4,5].

Tuberculosis (TB) is one of the major life-threatening infectious diseases, millions of
people continue to fall sick with TB each year. According to the WHO data, 10 million new
cases of TB (including 1.2 million children) were reported, and 1.4 million people finally
died from TB in 2019 [7]. Due to a considerable increasing rate of rifampicin resistance (RR)
among strains of Mycobacterium tuberculosis (206k cases of multi-drug resistance MDR/RR-
TB were detected and reported in 2019) combined with the evidence on the interaction
between COVID-19 and TB in particular as public health implications (lower access to
health services) [8,9]. A recent WHO report on tuberculosis suggested urgent actions to
improve coverage and quality of treatment for people with drug-resistant TB and better
insight into MDR tuberculosis development. [7]. One of the factors which can help in this
case is active ingredient analysis, necessary in drug quality control and as well as a useful
tool in therapeutic drug monitoring during the treatment of tuberculosis [5].
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According to the available literature, the following analytical methods are commonly
used for the determination of rifampicin in pharmaceuticals and body fluids: separa-
tion techniques—thin layer chromatography [10] with densitometric detection [11] or
high-performance [12], high-performance and ultra-high-performance liquid chromatogra-
phy [13], micellar electrokinetic chromatography [14], capillary electrophoresis [15] and
combined high-performance liquid chromatography-tandem mass spectrometry [16]; op-
tical techniques—spectrophotometry [17] and electroanalytical techniques. In the case
of electroanalysis, stripping techniques are used preferably such as potentiometry and
voltammetry [18–20] but in most cases voltammetry are limited to a positive potential
range. The analysis in the negative potential range is possible using classical mercury
electrode with high sensitivity, reproducibility and linearity range. However, the toxicity of
mercury limits the application of the mercury electrodes in the analysis in both laboratory
and portable applications [21]. One of the approaches to overcoming these limitations is
to use a renewable silver amalgam film electrode (Hg(Ag)FE). A detailed description of
the mentioned sensor and the first application was described previously [22]. The simple
design of the Hg(Ag)FE electrode combined with the possibility of refreshing electrode
surface provides a broad range of applications. Moreover, the use of the Hg(Ag)FE allows
sensitive voltammetric determination of both inorganic and organic compounds, including
active pharmaceutical ingredient (API) in various matrices [23–29].

In this work, the application of cyclic renewable mercury film silver-based electrode
(Hg(Ag)FE) in the determination of rifampicin is presented. The method based on differen-
tial pulse voltammetric technique was performed without preconcentration time allowing
detection of rifampicin at trace level. The new method was examined with a successful
application for the determination of rifampicin contents as API in several simple and
composed pharmaceutical formulation.

2. Materials and Methods
2.1. Measuring Apparatus and Software

All the voltammetric measurements were carried out at room temperature, using a
multipurpose Electrochemical Analyzer M161 (MTM-ANKO, Kraków, Poland) controlled
by PC. The typical three-electrode system of the electrode stand M164 (MTM-ANKO,
Kraków, Poland) used Hg(Ag)FE as a working electrode, an Ag/AgCl reference electrode
with a double junction and a platinum wire as an auxiliary electrode. SevenCompact
pH meter S220 (Mettler-Toledo, Geneva, Switzerland) was used for pH measurements.
Stirring was performed using a magnetic bar rotating with a speed of 500 rpm. For all
the dataset processing and statistical calculations Statistica 13.3 (Tibco Software Inc., Palo
Alto, CA, USA), OriginPro 2020 (OriginLab Corporation, Northampton, MA, USA) and
MarvinSketch (ChemAxon, Budapest, Hungary) were used.

2.2. Chemicals and Glassware

All reagents of analytical grade: CH3COOH (Suprapur), mercury GR for polarography,
Triton X-100 and were from Merck (Darmstadt, Germany). A standard rifampicin solution
of (10.3 mg/5 mL) and lower concentrations were prepared by dissolving rifampicin
(Sigma-Aldrich, Steinheim, Germany) or by appropriate dilution in quadruple distilled
water and were stored in a refrigerator. The silver wire (Ø 0.5 mm) for the film electrode was
made of 99.99% polycrystalline silver (Goodfellow Science Park, Huntingdon, England).
Before use, all glassware was immersed in a diluted (1:10) aqueous solution of HNO3 (65%)
and then rinsed copiously with distilled water.

2.3. Standard Procedure of Measurements

Differential pulse voltammetry (DPV) was chosen for quantitative measurements
of RIF using and the standard addition procedure. Before each measurement mercury
film of Hg(Ag)FE electrode was refreshed and after conditioned applying a potential
of −400 mV for 3 s. The potential of Hg(Ag)FE was changed in the following order:
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conditioning/starting potential −400 mV and recording in the cathodic direction from
−400 mV to −1050 mV. The DPV instrumental parameters were as follows: step potential,
4 mV; pulse potential, 30 mV; time step potential, 20 ms (10 ms of waiting and sampling
time) in 0.1 M CH3COOH as supporting electrolyte.

2.4. Analysis of Rifampicin in Pharmaceutical Formulation

Ten tablets of Rifampicyna TZF® and ten Rifamiazid® (Polfa Tarchomin both) capsules
content was weighed and powdered separately in an agate mortar, and the average weight
of the tablet and capsule were calculated. Next, an appropriate amount of the powdered
material was weighed and transferred to a volumetric flask and filled with quadruple
distilled water to achieve the desired concentration. The obtained solution after 20 min of
sonication, was filtered through a 0.45 µm membrane disk and filled up to the mark in the
10 mL volumetric flask. After, the obtained solution was ready to direct measurements,
according to the proposed procedure, without additional pretreatment or extraction steps.

3. Results
3.1. Influence of Supporting Electrolyte Type and pH on Rifampicin Peak

The effect of various supporting electrolytes on RIF peak was studied including the
solutions of salts (potassium chloride and nitrate), base (sodium hydroxide), acid (acetic
and phosphoric) and buffers (Britton—Robinson, phosphate, acetate). The height and
shape of the peaks (based on the FWHM value—full width at half maximum) as well as
the stability and repeatability of the signal were adopted as the evaluation criteria. In the
investigated range, the pH influenced RIF peak current and potential causing its widening
and enlarging. Although, the peak potential was shifted from −692 mV to −735 mV
and the relationship with pH has a linear characteristic. In the case of RIF, the optimal
pH ranged from 3.3 to 4.1, while outside these values its peak current was decreasing
(Figure 1). The best RIF peak shape, good signal-to-noise ratio (SNR) and optimal ionic
medium conductivity were achieved for the solution of 0.1 M CH3COOH (pH = 3.3) and
this concentration was chosen for further analysis. Considering the protonation of RIF, the
optimal pH was close to the theoretical value calculated for these conditions at a given pH.
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Figure 1. Dependence of peak current and potential on pH value. Instrumental parameters: ΔE = 30 
mV, Es = 4 mV, tw, tp = 10 ms. Stirring rate, 500 rpm. 

Figure 1. Dependence of peak current and potential on pH value. Instrumental parameters:
∆E = 30 mV, Es = 4 mV, tw, tp = 10 ms. Stirring rate, 500 rpm.

3.2. Effect of the DPV Parameters on Rifampicin Peak

Using the DPV technique RIF showed two peaks at potentials −693 mV and −966 mV
in CH3COOH (pH = 3.3). The keys parameters of the DPV technique are pulse amplitude
(dE), potential step amplitude (Es), waiting (tw) and sampling time (tp). So, the effect of
the above instrumental parameters has been investigated for the first peak (twice as high
as the second) in the ranges: 10–100 mV (both +/−) for dE, 1–9 mV for Es and 5–40 ms
for both tw and tp. The increase of the pulse amplitude in negative mode caused peak
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shifting from −763 mV to −694 mV (Figure 2). The pulse amplitude above 40 mV caused
a significant reduction of SNR due to the growth of background current and decrease of
peak current (above 70 mV). At the optimal pulse amplitude of 30 mV, the RIF peak current
was equal to 3.48 µA and showed the best SNR value.
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Considering SNR value, the best results were obtained for an amplitude of 30 mV,
the selected pulse amplitude was applied for further studies. In the case of potential
step amplitude, the rifampicin peak current showed significant growth up to 9 mV with
significant growth of the background current (Figure 3). Due to the limitation of measuring
data by applying step potential above 4 mV this value was selected for further research. The
range of waiting and sampling time were tested from 10 ms to 60 ms, and the best results
were obtained with 10 ms for each of them. In order to reach the lowest RIF detection limit,
two types of mercury electrodes were chosen for comparison. The voltammograms of RIF
obtained on HMDE and Hg(Ag)FE were investigated, compared and showed in Figure 4.
The calculated current value of rifampicin peak, taking into account different surface areas
of electrodes was 2.8 times higher for Hg(Ag)FE than for HMDE in the same condition.
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(5.7 mm2) in 0.1 M CH3COOH with the same instrumental parameters applied.

3.3. Influence of the Surface Area of the Hg(Ag)FE Electrode on Rifampicin Peak

The solid electrode surface areas are usually greater than those of conventional mer-
cury drop electrodes. However, when using the Hg(Ag)FE as a working electrode, its
surface can be easily adjusted over a wide range. The rifampicin peak heights were linearly
dependent on the surface area of the working electrode (Figure 5). The linear relationship
was described by following parameters: slope, 0.175 ± 0.004 [µA mm−2]; intercept, −0.240
± 0.027 [µA] and Pearson correlation coefficient, r = 0.9996. The size of the working
electrode of 10.9 mm2 was selected for further studies.
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3.4. Interferences

As a source of strong interferences in voltammetric methods, the surface-active com-
pounds are usually suggested. Therefore, some common excipients found in pharma-
ceutical formulations (silicium oxide, carboxymethyl starch, sodium laureth sulfate, talc
and magnesium stearate) and a nonionic surface-active compound (Triton X-100) were
investigated. Based on the obtained results it was shown that tested excipients do not
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significantly affect RIF peaks. Whereas Triton X-100 solution caused reduce the signal
by 47%, 80% and 87% for 0.5 mgL−1, 1.2 mgL−1 and 2.5 mgL−1, respectively (Figure 6).
Triton concentration above 1 mgL−1 causes peak drift to a more negative potential. It
was suggested that hundreds of times concentration of surface-active compounds such as
Triton X-100 does not significantly affect the quantitative analysis of RIF. The presence of
isoniazid, as one of the components of Rifamazid® was studied. Isoniazid in an acidified
electrolyte solution (0.1 M CH3COOH) does not interfere and was studied before [28].
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3.5. Analytical Performance

The linearity range of up to 250 µgmL−1 was tested, but the smaller range was selected
for further studies. The DP cathodic voltammograms of RIF for the 0.2–1.8 µgmL−1

concentration range without preconcentration step are presented in Figure 7. In this
concentration range the slope for regression line is 2.17 ± 0.05 [µAµg−1mL] with correlation
coefficient r = 0.996. The occurrence of the autocorrelation of residues was assessed using
the Durbin-Watson test. In this case, the value of Durbin-Watson’s statistics is d = 1.24,
which is between the upper (du = 1.32) and bottom (dl = 0.82) threshold, so the test does
not determine of correlation of the random component. Next, according to the method of
Lagrange multipliers, the autocorrelation of the random component was not shown. The
normal distribution of the residuals was examined by the Shapiro-Wilk test, (W = 0.964 >
W*0.05 = 0.829; p = 0.84 > 0.05) and it was found that there are no bases for rejecting the
hypothesis of a normal distribution of the random component. Therefore, heteroscedasticity
of the random component was verified by Bartlett’s test and the results are χ2 = 0.009,
df = 1, p = 0.92 > 0.05 which shown that variance of the residuals in the model is constant.

The estimation of the limits of detection (LOD) and quantification (LOQ) was based
on SNR value of 3:1 and 10:1, respectively. Base on the obtained results of the short time
analysis (without pre-concentration step), it is possible to achieve LOD = 0.12 µgmL−1 and
LOQ = 0.4 µgmL−1 for RIF. The comparison of sensitivity obtained for RIF using other
analytical techniques from available literature was shown in Table 1. Obtained results are
positioned within the best results using simple, low-cost instrumentation and short-time
analysis.
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Table 1. The comparison of the sensitivity of selected analytical techniques for rifampicin.

Analytical Technique LOD [µgmL−1] LOQ [µgmL−1] Reference

UHPLC–UV 1.9 2.9 [13]
MEKC 4.5 14.9 [14]

LC–MS/MS 0.1 * 0.1 * [16]
Fluorimetry 0.25 0.75 [17]
DPV:HMDE 0.13 0.4 [30]

DPV:Hg(Ag)FE 0.12 0.4 This work
* LLOQ—lower limit of quantification; UHPLC—ultra-high-performance liquid chromatography; MEKC—
micellar electrokinetic chromatography; LC-MS/MS—high-performance liquid chromatography-tandem mass
spectrometry.

The repeatability of the method at a concentration level of the analyte as low as
10 µgmL−1, expressed as RSD is 4.16% for six consecutive measurements. Bulk pharmaceu-
tical samples (described in Section 2.4) and samples enriched with 75, 150 and 225 mg of
RIF were used for the precision and recovery tests of the method. Quantitative analysis
of the RIF samples carried out using the Hg(Ag)FE and the standard addition technique.
The recovery of rifampicin in Rifamazid ranged from 98.1–102.9% and Table 2. Results of
rifampicin determination in pharmaceuticals formulation are presented in Table 3.

Table 2. Recovery of rifampicin determination in Rifamazid®.

Added [mg] Found [mg] Recovery [%]

Rifampicin

- 149.5 ± 6.4 -
75 221.9 ± 8.2 98.8
150 308.1 ± 11.7 102.9
225 367.5 ± 12.6 98.1
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Table 3. Rifampicin determination in pharmaceuticals formulation.

Sample Nominal [mg] Found [mg] µ [mg] Recovery [%] RSD [%] SD

Rifamazid®

150 mg
rifampicin

100 mg
isoniazid

150

145.2
152.4
141.1
145.8
155.4
157.3

149.5 99.7 4.3 6.4

Rifampicyna
TZF

150 mg
rifampicin

150

142.6
144.7
146.5
147.2
151.5
158.8

148.5 99.0 3.9 5.8

4. Conclusions

The presented DPV method for the electrochemical determination of rifampicin using a
cylindrical silver-based mercury film electrode (Hg(Ag)FE), allows determining rifampicin
at trace level, without preconcentration step. Determination of rifampicin under optimized
condition exhibited high sensitivity (LOD = 0.12 µgmL−1, LOQ = 0.40 µgmL−1), wide
linearity range (0.2–250 µgmL−1), good precision (RSD = 4.3%), and good recovery. The
repeatability of the method, with each measurement carried out at a fresh surface of
the working electrode, is satisfactory and equals RSD = 4.16%. The proposed method
is applicable for the rifampicin determination in pharmaceuticals. The obtained results
were in good agreement with the content of API declared by the manufacturer, even in
the presence of common excipients and isoniazid. The obtained results confirm that the
developed method might be a useful tool for the quality control of pharmaceutical products
and drug monitoring, whereas Hg(Ag)FE could be incorporated into portable voltammetric
sensor systems.

Author Contributions: M.S.: Conceptualization, Methodology, Validation, Formal Analysis, Inves-
tigation, Writing—Original Draft, Visualization, R.P.: Methodology, Writing—Review & Editing,
Software, Data Curation, A.M.: Resources, Formal Analysis, U.H.: Resources, Writing—Original
Draft. All authors have read and agreed to the published version of the manuscript.

Funding: The APC was funded by Polish Ministry of Education and Science N42/DBS/000155.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data is available from the authors upon reasonable request.

Acknowledgments: The study was financed as an R&D project by the Polish Ministry of Science of
Education from research funds for the years 2015–2018 (KZDS/0005586).

Conflicts of Interest: Authors have declared no conflict of interest.

References
1. Zumla, A.; Raviglione, M.; Hafner, R.; von Reyn, C.F. Tuberculosis. N. Engl. J. Med. 2013, 368, 745–755. [CrossRef]
2. Trestioreanu, A.Z.; Fraser, A.; Gafter-Gvili, A.; Paul, M.; Leibovici, L. Antibiotics for preventing meningococcal infections.

Cochrane Database Syst. Rev. 2013, 2013, CD004785. [CrossRef]
3. Lee, M.Y.; Bourgeois, S.; Almouazen, E.; Pelletier, J.; Renaud, F.; Fessi, H.; Kodjikian, L. Microencapsulation of rifampicin for the

prevention of endophthalmitis: In vitro release studies and antibacterial assessment. Int. J. Pharm. 2016, 505, 262–270. [CrossRef]
4. Ray, J.; Gardiner, I.; Marriott, D. Managing antituberculosis drug therapy by therapeutic drug monitoring of rifampicin and

isoniazid. Intern. Med. J. 2003, 33, 229–234. [CrossRef]
5. Alsultan, A.; Peloquin, C.A. Therapeutic Drug Monitoring in the Treatment of Tuberculosis: An Update. Drugs 2014, 74, 839–854.

[CrossRef]
6. Moussa, L.A.; El Bouazzi, O.; Serragui, S.; Tanani, D.S.; Soulaymani, A. Rifampicin and isoniazid plasma concentrations in

relation to adverse reactions in tuberculosis patients: A retrospective analysis. Ther. Adv. Drug Saf. 2016, 7, 239–247. [CrossRef]
[PubMed]

http://doi.org/10.1056/NEJMra1200894
http://doi.org/10.1002/14651858.cd004785.pub5
http://doi.org/10.1016/j.ijpharm.2016.03.026
http://doi.org/10.1046/j.1445-5994.2003.00390.x
http://doi.org/10.1007/s40265-014-0222-8
http://doi.org/10.1177/2042098616667704
http://www.ncbi.nlm.nih.gov/pubmed/27904742


Sensors 2021, 21, 5792 9 of 9

7. WHO. Global Tuberculosis Report 2020; WHO: Geneva, Switzerland, 2020.
8. Visca, D.; Ong, C.; Tiberi, S.; Centis, R.; D’Ambrosio, L.; Chen, B.; Mueller, J.; Duarte, R.; Dalcolmo, M.; Sotgiu, G.; et al.

Tuberculosis and COVID-19 interaction: A review of biological, clinical and public health effects. Pulmonology 2021, 27, 151–165.
[CrossRef] [PubMed]

9. Migliori, G.B.; Thong, P.M.; Akkerman, O.; Alffenaar, J.-W.; Álvarez-Navascués, F.; Assao-Neino, M.M.; Bernard, P.V.; Biala,
J.S.; Blanc, F.-X.; Bogorodskaya, E.M.; et al. Worldwide Effects of Coronavirus Disease Pandemic on Tuberculosis Services,
January–April 2020. Emerg. Infect. Dis. 2020, 26, 2709–2712. [CrossRef] [PubMed]

10. Shewiyo, D.; Kaale, E.; Risha, P.; Dejaegher, B.; Smeyers-Verbeke, J.; Heyden, Y.V. Optimization of a reversed-phase-high-
performance thin-layer chromatography method for the separation of isoniazid, ethambutol, rifampicin and pyrazinamide in
fixed-dose combination antituberculosis tablets. J. Chromatogr. A 2012, 1260, 232–238. [CrossRef]

11. Rageh, A.M.I.M.; Mohamed, F.A.; Atia, N.N.; Botros, S.M. Simultaneous Densitometric Determination of First Line Anti-TB
Drugs in Binary, Ternary, and Quaternary Mixtures. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 1061–1067. [CrossRef]

12. Strock, J.; Nguyen, M.; Sherma, J. Transfer of Minilab TLC Screening Methods to Quantitative HPTLC-Densitometry for
Pyrazinamide, Ethambutol, Isoniazid, and Rifampicin in a Combination Tablet. J. Liq. Chromatogr. Relat. Technol. 2015, 38,
1126–1130. [CrossRef]

13. Franco, P.H.C.; Chellini, P.R.; Oliveira, M.A.L.; Pianetti, G.A. Simultaneous Determination of First-Line 4-FDC Antituberculosis
Drugs by UHPLC–UV and HPLC–UV: A Comparative Study. J. AOAC Int. 2017, 100, 1008–1015. [CrossRef]

14. Iriminescu, D.; Cârcu-Dobrin, M.; Hancu, G.; Mircia, E.; Kelemen, H.; Rusu, A.; Tilinca, M. Simultaneous determination of
isoniazid an drifampicin by micellar electrokinetic chromatography. Stud. Univ. Vasile Goldis Arad. Ser. Stiint. Vietii 2016, 26,
353–357.

15. Marcellos, L.F.; Faria, A.F.; Souza, M.V.N.; Almeida, M.R.; Sabin, G.P.; Poppi, R.; Oliveira, M.A.L. Simultaneous analysis of
first-line anti-tuberculosis drugs in tablets by UV spectrophotometry compared to capillary zone electrophoresis. Open Chem.
2012, 10, 1808–1816. [CrossRef]

16. Grégoire, M.; Leroy, A.; Bouquié, R.; Malandain, D.; Dailly, E.; Boutoille, D.; Renaud, C.; Jolliet, P.; Caillon, J.; Deslandes, G.
Simultaneous determination of ceftaroline, daptomycin, linezolid and rifampicin concentrations in human plasma by on-line
solid phase extraction coupled to high-performance liquid chromatography–tandem mass spectrometry. J. Pharm. Biomed. Anal.
2016, 118, 17–26. [CrossRef]

17. Liu, Z.; Yin, P.; Gong, H.; Li, P.; Wang, X.; He, Y. Determination of rifampicin based on fluorescence quenching of GSH capped
CdTe/ZnS QDs. J. Lumin. 2012, 132, 2484–2488. [CrossRef]

18. Kawde, A.-N.; Temerk, Y.; Farhan, N. Adsorptive stripping voltammetry of antibiotics rifamycin SV and rifampicin at renewable
pencil electrodes. Acta Chim. Slov. 2014, 61, 398–405.

19. Asadpour-Zeynali, K.; Mollarasouli, F. Novel electrochemical biosensor based on PVP capped CoFe2O4 @CdSe core-shell nanopar-
ticles modified electrode for ultra-trace level determination of rifampicin by square wave adsorptive stripping voltammetry.
Biosens. Bioelectron. 2017, 92, 509–516. [CrossRef] [PubMed]

20. Chokkareddy, R.; Bhajanthri, N.K.; Redhi, G.G. A Novel Electrode Architecture for Monitoring Rifampicin in Various Pharmaceu-
ticals. Int. J. Electrochem. Sci. 2017, 12, 9190–9203. [CrossRef]

21. Beni, V.; Ogurtsov, V.I.; Bakunin, N.V.; Arrigan, D.W.; Hill, M. Development of a portable electroanalytical system for the stripping
voltammetry of metals: Determination of copper in acetic acid soil extracts. Anal. Chim. Acta 2005, 552, 190–200. [CrossRef]
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24. Baś, B.; Jakubowska, M.; Górski, Ł. Application of renewable silver amalgam annular band electrode to voltammetric determina-
tion of vitamins C, B1 and B2. Talanta 2011, 84, 1032–1037. [CrossRef] [PubMed]

25. Brycht, M.; Skrzypek, S.; Guzsvány, V.; Berenji, J. Conditioning of renewable silver amalgam film electrode for the characterization
of clothianidin and its determination in selected samples by adsorptive square-wave voltammetry. Talanta 2013, 117, 242–249.
[CrossRef] [PubMed]

26. Piech, R.; Paczosa-Bator, B. Sensitive and fast determination of papaverine by adsorptive stripping voltammetry on renewable
mercury film electrode. Open Chem. 2013, 11, 736–741. [CrossRef]

27. Smajdor, J.; Piech, R.; Paczosa-Bator, B. Voltammetric Determination of Drospirenone on Mercury Film Electrode. J. Electrochem.
Soc. 2017, 164, H311–H315. [CrossRef]

28. Szlósarczyk, M.; Piech, R.; Paczosa-Bator, B.; Maslanka, A.; Opoka, W.; Krzek, J. Voltammetric Determination of Isoniazid using
Cyclic Renewable Mercury Film Silver Based Electrode. Pharm. Anal. Acta 2012, 3, 9. [CrossRef]

29. Górska, A.; Paczosa-Bator, B.; Piech, R. Highly Sensitive Levodopa Determination by Means of Adsorptive Stripping Voltammetry
on Ruthenium Dioxide-Carbon Black-Nafion Modified Glassy Carbon Electrode. Sensors 2020, 21, 60. [CrossRef]

30. Alonso-Lomillo, M.A.; Domínguez-Renedo, O.; Arcos-Martínez, J. Optimization Procedure, Applying the Experimental-Design
Methodology, for the Determination of Rifampicin after Metal Complexation by Differential Pulse Adsorptive Stripping Voltam-
metry. Helv. Chim. Acta 2002, 85, 2430–2439. [CrossRef]

http://doi.org/10.1016/j.pulmoe.2020.12.012
http://www.ncbi.nlm.nih.gov/pubmed/33547029
http://doi.org/10.3201/eid2611.203163
http://www.ncbi.nlm.nih.gov/pubmed/32917293
http://doi.org/10.1016/j.chroma.2012.08.044
http://doi.org/10.1080/10826076.2015.1020163
http://doi.org/10.1080/10826076.2015.1028292
http://doi.org/10.5740/jaoacint.16-0200
http://doi.org/10.2478/s11532-012-0102-6
http://doi.org/10.1016/j.jpba.2015.10.008
http://doi.org/10.1016/j.jlumin.2012.03.072
http://doi.org/10.1016/j.bios.2016.10.071
http://www.ncbi.nlm.nih.gov/pubmed/27840036
http://doi.org/10.20964/2017.10.13
http://doi.org/10.1016/j.aca.2005.07.058
http://doi.org/10.1002/1521-4109(200208)14:15/16&lt;1067::AID-ELAN1067&gt;3.0.CO;2-5
http://doi.org/10.1135/cccc2009112
http://doi.org/10.1016/j.talanta.2011.03.006
http://www.ncbi.nlm.nih.gov/pubmed/21530776
http://doi.org/10.1016/j.talanta.2013.08.048
http://www.ncbi.nlm.nih.gov/pubmed/24209336
http://doi.org/10.2478/s11532-013-0208-5
http://doi.org/10.1149/2.0541706jes
http://doi.org/10.4172/2153-2435.1000189
http://doi.org/10.3390/s21010060
http://doi.org/10.1002/1522-2675(200208)85:8&lt;2430::AID-HLCA2430&gt;3.0.CO;2-

	Introduction 
	Materials and Methods 
	Measuring Apparatus and Software 
	Chemicals and Glassware 
	Standard Procedure of Measurements 
	Analysis of Rifampicin in Pharmaceutical Formulation 

	Results 
	Influence of Supporting Electrolyte Type and pH on Rifampicin Peak 
	Effect of the DPV Parameters on Rifampicin Peak 
	Influence of the Surface Area of the Hg(Ag)FE Electrode on Rifampicin Peak 
	Interferences 
	Analytical Performance 

	Conclusions 
	References

